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ABSTRACT OF THE DISSERTATION

Bounds for Iterates, Inverses and Spectral Variation
of Non—Normal Matrices
by
Edward Arthur Sallin

University of California, Los Angeles, 1963
Professor Peter K. Henrici, Chairman

For an arbitrary multiplicative matrix norm 2’ and arbitrary

non—singular matrix N, we define the condition number C_(N) of
N with respecr to 2/ as 1)(N)'y(N"l). A square matrix is said
to be quasi-diagonal 1f it is a symetrically partitioned triangular
matrix which is diagonal when considered as a partitioned matrix.

The following problems of computational linear alg;bta are
considered in this paper:

(1) Given an arbitrary square matrix A, to explicitly
congtruct and determine a bound for a condition number of a matrix
N such that Q = N ! AN is quasi—diagonal.

(II) To estimate the norms of An, n=1,2,,.. in terms of
the eigenvalues of A and C_(N).
(II1) To estimate the error » — A ' b of an approximate
solution x of the equation Ax = b in terms of the residual

~

r=Ax — b, the eigenvalues of A and Cv(N). To estimate the
error X - A_l of an approximate inverse X of A in terms of
the residual AX - I, the eigenvalues of A and Cv(N)°

(IV) To estimate the distance of the spectrum of an arbi~-

trary matrix B from the spectrum of A in terms of a norm of

B — A, eigenvalues of A and Cy(N)a



Solations to problems (1), (III) and (IV) are classical if A
is normal. 1i.e , AA* = A® A. Solutions have been constructed for
non—npotmal A, bur with less satisfactory results. A partitioned
Schur form of a given matris A will be called an ordered Schur
form if (i) the sigenvalues are lexicographically ordered by blocks
on the diagonal, and (i1) equal eigenvalues belong to the same
block. Let A be ar orderéd Schur form of B and let N be
chosen such *that Q= N_l AN 1s quasi-diagonal with Q = diag
(“1,1’Q22~" "°’Qkk) . where Qi.l = Ax' is of order nib Writing

i

Qii = Di + L.1 where Di is the dtagonal part of Qn and setting

(

= o(L), o, =X\ where ¢ 1s the spectral norm and X\ is
L 1 Q“ A

the spectral radiuns of A, w#¢ can conclude:

i

THEOREM. If X > 0.

B
. -1
r i or (r ™1 r r-n +1,7{ ]
) ~ x + oeo o
og(B") §mxn[C°,(N) mzx & + l)z’i !,1 + ni_l Ai i 111
.I_f )\'B * 0,
r T r!
6(B") < min (.IO_(N) m:x (d, r=12,....M-1
r
*(B) ~ 0. r>M

where M = max n and vwhere the minimam is taken over all ordered

i
Schur forms.

If 700 1: defined for all x>0 by £(x) = x + x2 + oo
+ %" we have.

THEOREM. If B 4is non—singular and non-normal and if
1
(

€, =L

i i

then



£ (t )
-1 1
g(B ) < mln[Cd(N) maix { I }]

where the minimum is taken over all ordered Schur forms.

Let the function gn = gn(y) be defined for all y >0 as
the (unique) mom—negative solution of the equation g + gz + ooo
+ gn =y, Then 1if M 1is an arbitrary matrix with eigenvalues Xi
and B has eigenvalues Pi’ the quantity

8 = 8 (B) - m?x {an Ipi }

is called rhe spectral variation of B with respect to M.

THEOREM. For non-normal M with M- B ¥ 0 we have for any

norm ) dominating o

y
5y(B) < min {[mgx Ti———] C,(N) V(U*BU — M)
g (yi)
where
2L

Y1 T T (N) J(U%BU - M)

and the minimum 1s taken with respect to all U occurring in an

ordered Schur form of M.




INTRODUCTION

Unless othsrwise stated, all matrices in this paper shall be
assumed to be recrangular m x n with complex elements and shall
be denoted by A = (aij)’ a vector shall mean & column vector with
n complex =lements.

A matrix corm is a real valued function 2 defined om the
space of squave matrires ard satisfying the following relations
for arbitrary matri:es A and B and arbitrary complex scalars
c:

fa) (A >0, (A = 0 if and oniyv 1f A =0

{b) V{cA) = ¢! (A

(c) (A + B) < /(A + 2(B).

If in addirtion.

(d)  2/(AB) < (&) 2/(B)

the norm is called multiplicative. We shall be concerned primarily

with such norms,

A vector norm is a real-valusd function defined on the space
of vactors and satisfying relarions analogous to (a), (b) and (c)
above.

By +he spectrum of a matrix A we mean the totality of its
eigenvalues , considered as a point set in the complex plane. The
largest of the moduli of rhe eigenvalues of A is called the

spectral radius of A and is denoted by A For any invertible

A



matrix S and multiplicative morm 2/ the condition number,

C,(S), of S with respect to the norm 2 1is defined by

6,48 = () w(STV).  Bauver (2]

A matrix i{s said to be partitioned (a partitioned or block
matriz) if 1t haz been divided into smaller arrays by horizontal
and verrical lines and each of the resulting submatrices have been
represented bv a single element. If an m X n matrix A is
partitioned t* shall be demoted by A = (Aij); the 1i,j element
of A being the submatrix Aij of A, or order o X nj where
z m, = m, 2 Dj = n. A partitioning of a matrix A by an equal
number of horizental and vertical lines in such a manner that each
of the resulting diagonal entries. Aii’ are square matrices is

called a symmetric partition.

A symmetrically partitioned triangular matrix A will be

called sp—triangular. Thus

Aij =0 for 1< 3, and

Aii are (lower) triangular matrices.

A partitioned matrix A is said to be quasi-diagonal if it

is sp~triangular and if Aij =0 for i#j.
The following problems of computational linear algebra will
be considered in this paper:

(1) Given an arbitrary sp—triangular matrix, A, to con—

struct a matrix N such that NQIAN 18 quasi—diagonal with



prederermined diagonal entries and to determine a bound for a con—
dition number of N.

{11) To estimate the norms of the matrices An, n=1,2, ...,
in terms of the eigenvalues of A and a condition number of N,
above .

(iii) To estimate the error ¥ - Amlb of an approximate
solution % of the equation Ax * b in terms of the residual
r > Ax - b, the eigenvalues of A and a condition number of N.

(1v) To estimate the distance of the spectrum of a matrix
B from the spectrum of A in terms of a norm of B — A, the
eigenvalues of A and a condition number of N.

Solutions to problems (i1). (iii) ard (iv) are classical 1if
A is normal. i.e.. AA* = A*A. Solutions have been constructed
for non—normal A, but wi*h lsss satisfactorv results. Some of
the bounds given depend on a knowledge of a matrix S in the
repregentation A = SJS‘I* whem J 1s the Jordan canonical form.
Other bounds do not approach the classical bounde if A approaches
4 normal matrix. The bounds given in the present paper, while
depending on the eigenvalues of A and their multiplicities, do
not require a knowledge of the Jordan canonical form. Furthermore,
our es*imates approach the classical estimates for A normal. Our
insistence on not using the Jordan form is motivated partly by
reasons of computational convenience, and partly by the fact that
the Jordan form is a discontinuous function on the space of matrices

and is therefore 111 suited for purposes of computation (see (8]
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for related remarks).

We shall develop a canonical form for arbitrary (non—normal)
matrices [problem (i) abovel which is continuous in nature and for
which we can explicitly demonstrate a transforming matrix N and
its condition number. Such a canonical form is daveloped in 2.1
and 3.1. Representations for N are given in 2.2]1 and 3.2 and
estimates for a condition rumber are given i1n sections 2.22 and
3.2,

These results are thenm applied to problems (i1)., (iii) and
(iv) 1n Chapters 4, and 5.

Certain estimates based upon a measure of non—mnormality of a
matrix have been derived by Wielandt in [29) and Henrici in (14].
Wielandt’s measure is applicable only to matrices which are similar
to a diagomal matrix., Henrici removes this restriction but gets
estimates in terms of A,. consequently making no use of eigen—

A

values of smaller modulus



CHAPTER 1

Preliminaries on Norms

It will be necessary to consider norms defined for rectangular
matrices. That this can be done is shown by the following lemma.

LEMMA 1. Given a family F of rectangular matrices of

bounded row and column dimension, say k, and an arbitrary multi-

plicative norm 2/ defined for square matrices, then exists a

family of norms vq $ q 2k which are multiplicative on F.

Proof. Let A,B,C be members of F where A and B are
of order r1><sl and C 1is of order rZsto Let q be any

integer such that q > k. In particular then q > r15815C):8,.
Define Aq to be the q X q matrix formed from A by the ad—

dition of q — r, rows of zeros and q — 5, columns of zeros:

Defi 2 (A) = (A ).
efine cl() (q)

With this definition yq has the properties of a multiplicative

norm, for

(1) vq(A) = 0 implies '))(Aq) = 0 which in turn means
that Aq and consequently A are null matrices. vq(A) >0

since (A ) = o (A).
q q



(1) Y (ed) = -u[(c.A)q] = V(eA) = lel V) = lel 2 (A).

(110w (a +B) = 1)[(A + s)q] - -U[Aq + nq]

< :)(Aq) + u(Bq) = a!q(A) + ")q(B)°

Whenever the product AC 1s defined, i.e., when sl = x, we have
8, q-8, q—s1 , 478,
ac o\t ¢ ’1
(1v)  (AC) s< 0 < ) >
q 0 O 0
q-Ty q-T, q—81
= AC, and
q 9

= ® 92/{A C
yq(AC) ﬂ[(Ac)q] Vi q q)

( C)H) = (A c).
< P V(E) = Y A YO

We 3hall have occasion to deal wirh functions defined on
scalar matrices whose elements are themselves norms of elements of
some fixed part:tioned matrix. By restricting the class of norms
employed we can guarantee that these functions will be norms of
the original matrix. The principal result is given by Lemma 3.

If A and B are matrices of the same row and column di-
mensions, A <B shall mean a_ _ < bi (1 =1,2,...,m;

13

j=1,2,...,n), Given any matrix A = (aij)y IAl  is the matrix

whose general element is Eaij'” A norm 32/ is called monotone
if for A and B of the sawme dimensions, 1Al < B implies
2(A) < V(B)

A sufficient. condirion for a norm to be monotone is given by

the following lemma.
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LEMMA 2. Let ) be any norm such that ) (lAl) = 2 (A).

Then -) 1is monotone.
Proof. Let A and B be given matrices of order m X n

and ler (Al < B. Thus
(1.1) la, .| <b (L1 =1,2,....m; j = 1,2,...,n).

Since, by hypothesis, 2/ depends only upon the magnitude of

each element of A we can assume that all aij > 0. To show that

2 {A) < w(B) it is sufficient to consider the case where only one
equality in (1-1) fails to hold, say a . < brs°
By postulate (b) of the definition of a norm we can assume
that brs = 1. To simplify the writing we can assume further that
we have r = s = 1 and hence 0 < 21 < b11 = 1 and have to show
that 1)(a11:b12,u.°,bmn) < ’)(1‘b12”°"“’bmn)° But this follows

immediately if we use the decomposition

all b12 cow b1n 1 b12 ceo bln
by By by | | Ltay R
—
by buy cer B I S
-1 b, el b
! P21 Py oo By
- a
' 11
5 .



and apply the triangle inequality and postulate (b) of a norm,

since we then have

V(o)) ibygeeesby )
l+a l-a
11 11 .
<—5 2 pp,, b )+ — L Db, b )
l+a l1~-a
11 11
= b, )+t (b, b )

= z)(l,blz, o.o,bmn) .

This generalizes Ostrowski's [20] concept of coordinatewise
symmetric gauge functions.

The use we shall make of the concept of monotone norms is
given in the following lemma.

LEMMA 3. Let A = (Aij) be a partitioned matrix. Let p be

an arbitrary multiplicative norm and A the scalar matrix whose

general element is p(Aij)u

Then if ) is a monotone multiplicative norm, the function

N, defined by N(A) = ﬂ(x) is a multiplicative norm.

Proof. We must verify the four postulates for & multiplicative
norm. Namely,

(a) N(A) = 0 implies 2)(A) and hence A = 0. Then
P(A“) = Q, Aij =0 and finally A= 0. N(A) >0 since 2) is a

norm.

11
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(b) N(cA) = J(cA) = j)[p(cA“)] - ’)[ldf'“ij)]
= J(iclA) = icl 2(X) = icl N(A)

(c) N(A+B) = o)(A +B)

(1-2) - ’)[P("‘ij + Bij)] = ’)[P(Aij) +P(Bij)]
= JE& +B) < DB + J(B) = N4 + NB)

(d) N(AB) = 2/(AB)
(1-3) - ’)[P( Z AikBkj)] = ’)[g Py P(Bkj)]
k
= P(AB) < V(X)) V(B) = N(A)N(B)

(1.2) and (1.3) hold since 2 1is monotonme.
The following are some of the most common norms of matrices

A= (aij)o (See [16], (21]).

aa) = 5 la, .l
1y 1
1/2
x*A*Ax
o(A) = max | ——— (Spectral norm)
x*o[ x*x ]
p(A) -m:x %’ laijl
y(A) = m;x % Iaijl
2 1/2 :
€(A) = [ Y el ] (Euclidean norm)
1,y 1

The last three are obvious examples of monotone norms.



if @ is a vector norm, then the function 'a)¢ defined by

#(Ax)
2, ®= sup 1)
¢ x #0 x)

always defines a ma®rix norm. Matrix norms defined in this way are
called lub norms in [31. The norms o, J and y defined above
can be derived in this manner from suitable vector norms [24]. On
the other hand, some matrix norms, such as €, cannot be thus
derived.

We ghall use the following definitions:

A matrix norm 2/ is called compatible with a vector norm p,
if p(Ax) < V(A)p(x) for all matrices A and vectors x. A lub
norm is always compatible with the vector norm defining it.

A matrix norm ) will be called unitarily invariant, 1if

V(U*AU) = J(A) for ail A and all unitary U. The normms o

and € are unitarily invariant, while o and y are not.

A lub norm is called axis-oriented [3] if 2J(D) = max |Id_ !
axis-oriented 11
1<i<n

= )’D for any diagonal ma“<rix D = (d The lub norms o, P Y

ij) ‘
are axis—oriented.

A norm < 1is said to majorize amother norm p if J(A)>p(QA)
for all A. The € norm majorizes o’

We shall require the following consequences of the defining

properties of a norm. [See ([21] for proofs].

LEMMA 4, If A, denotes the spectral radius of A, then

V(A) 23, for any matrix norm ).

13



LEMMA 5. If p and 2/ are any two matrix norms, then there

exists a constant ﬂuz)' depending only on these two norms, such

that

}I(A) 5 va U(A)s

for all matrices A.
Values of Pﬁz) for special norms are given in ([27].
We have finally

LEMMA 6. let D be the quasi—diagonal matrix D = dg(Dl’DZ’

«»3D. ). Then o(D) = max o(D ).
k —— 1 i
For the proof we nore first that oz(A) - XA*A for all A

and in particular oZ(D) = )\ But D*D = dg(D*D_ ,D*D OO.SD:Dk)

171’7272

and the eigenvalues of D*D are the union of those of D:D

D*D”’

T Thus
2

XD*D - m?x XD?Di and o (D) mix o'z(Di)°

14



CHAPTER 2

Introduction. This chapter is divided into two sections. The
first is concerned with the problem of establishing the existence

of a matrix N such that N-l

BN 1is quasi—diagonal for an arbitrary
matrix B. The results of this section are used to give an explicit
representation for N, above, and to estimate its condition number.
Seztion 2.1, We may restrict our attention to any one of the
triangular forms A of a given matrix B since every matrix is
unitarily similar to a triangular matrix, and since we shall ulti-
mately make use only of unitarily invariant norms. It is true
further that the ordering of the diagonal elements of A (the
eigenvalues of A) may be specified arbitrarily. It is of im—
portance to subsequent estimates we shall make that the specifi-
cation of rhe ordering of eigenvalues does not uniquely determine

the triangular form.

We assume then that

)‘lﬁ)‘zf ooosxn

where ki - a i=1,2,...,n are the eigenvalues of A, and

where xi‘< A. means that either

3

(a) Re xi < Re xj or

(b) Re Xi = Re kj and Im xi < Im xjo
This is the so—called lexicographic, or dictionary, ordering of the

complex plane.

15



If A has eigenvalues xl,Xzﬁ.a,,xn we define the (disjoint)

sets S ,Szvouops of orderv nlgnz,oou”nk respectively, such that

k 1 k
z n, = n, and
1=}
(a) xl € Sk, xj = implies xj € Sk and
(b) Ai € Skp Xj € Spy k <p implies Xi-A Lj.
These sets Skj uniquely determine a symmetric partition of

A if we specify thar the diagonal terms of each diagonal submatrix
resulting from the partitioning belong to one and only one Sj°
Any matrix which satisfizs the above triangularity, ordering

and partition conditions shall be said to be in an ordered Schur

form or to be an ordered Schur matrix.

Let then A = (Atj), (1,5 = 1,2,....k) be any ordered Schur

matrix, which we assume is of order k, and where the Aij are

k
matrices of order n X mn, with Z n, *=n.
i i {=1 i

DEFINITION., E_  denotes the row vector,

i
(Eil’E125°°"Eik)

where E is of order n, X n and
i8 1 L}

0 if s #1

Here In denotes the n, X n, identity matrix and I (with no
N ;

subscripts) 18 the = X p identity matrix partitioned as A

above.

e

1¢



DEFINITION. E: is5 the ~olummn vector

L Eik i

where the Efs are the transposes of the Eis° Then

T 6 , j%$1i

) T ;
(2.1-1) E E, = E E =
bt e
n
1
It then follows fthat
(2.1-2) A =~E AEL
° ij i 3
T
- o an X n,
The matrix M Ei Nij Ej, where Nij 18 an arbitrary ny nJ
matrix, is such that
£~Nij for r=41, s = j
(2.1-3) Mrs a L’O otherwise

DEFINITION., The partitioned matrices E1j defined by

. : . T
B, e By IELE S Nij] I+E N, E

where the th are arbitrary n_ X n, matrices for 1 > j

1 3

null matrices otherwise are called elementary block matrices.

and

That

17



1!

is

1 r=g=j
Py

Eij)rs - Nij r=1i, g = j

0 otherwise

(

Using (2.1-1), (2.1-2) and (2.1—4), the following properties

of elementary block matrices may be verified:

EI;[Ei”Ej ; Nij] = Eij[zi’zj ; —Nij]

(j=1,2,...,k = 1)

we have
N =I+(5 E'N)E,.
3 Sy 11
That is
1 r=g= § i=1,2,...,k
"y
(Nj)rs - Nrj r>s, s=j
0 otherwise
Furthermore,
=1 T
N =1 — E. N E..
3 €&, 5Nyt
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Letting
k-1
(2.1-6) N = T_T N,.; we have
=1 3
1 r=gm={ (i=1,...,k)
n
i
(N)rs = Nrs r>s
0 r<s
k—1
N1 N; .
=0 <
Letting N = (ﬁ;j), where
>
N Ny, 1>
Nij - we have
o 1<y

since N =0 for r >k
Nla@+MmTar-F+ .o (0T R,

DEFINITION. The function Fij defined by

-1
P =EL AR, 1,5 = 1,2,...,k

is called an elementary block similarity transformation. We shall

study the effect of Fij on the ordered Schur form A. For { > §

we have using (2.1-3)



T
(2.1-7) (ACE, W, Ej)]ts - #gs (E1 Ny, j)
{0» s ¢ ]
Ay Nyypp 873
(2.1-8) TN, E)Al_ = S (TN E)_ A
° i 43 "3 s i1 3" rp ps

" pes

{ o, réi
Nij Ajs’ r=1

Triangularity of A yields

T E) AGEEN  E) =E' N, (E. AEDN,, E

(2.1-9) (B N,y E) ACE, Ny Ep) = E; Ny j(Ey & EDN, E,

= 0.

Using (2.1-9) with { > j we have by a straightforward com-

putation

-1
[Fij(A)]rs = (Eij A E1j)rs

T . J
= Ars - {(1-:i Nij EJ)A] + {A(Ei N . E )]m

ij 3

Coupled with (2.1-7) and (2.1-8) this yields for 1 > j:

2
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[Fij(A)]rs -

r~

(2.1-10) AL - Nij r=41i, s % j
(2.1-11) i 1 Mg T AL N, réi, s= 4
(2.1-12) Ay tALN SN AL red, e
(2.1-13) Ars otherwise

Recalling rhat A is triangular we note that

, 0 r<s
(Fy 0], =

A r=g
rr

We note furcther that only elements in the ith row and those in the

jth column of A are altered by F

For i j we have Eii Eii

ij°

= 1 and consequently

[Fii(A)]IS = Ars

By (2.1-12) we see that [FiJ(A)]i « 0 1if and only if there

3

exists an ni X n, matrix N such that

3 1]

(2.1-14) A, ..

-~Aii Nij +~Nij Ajj = 13

That this equation is solvable may be seen from the following

theorem which is proved in the Appendix.

THEOREM A-1. A necessary and sufficient condition that the

matrix equation —AX + XB = C have a solution for all C is that

the eigenvalues of A be distinct from those of B.




22

Indeed, since A wa3 assumed to be an ordered Schur form and

i ¥ j, the eigenvalues of Aii are distinct from those of Ajjo

We shall now consider the effect of successive applications of

elementary similarity transformations, F ., on an ordered Schur

13

form A where ar each stage N is chosen as the solution to

1]
(2.1-14) . For this we introduce the following notationm.

AL

Let FII(A) = A

(3.1) r(2.1)
A Fola ]

{ [(1-1,33‘ 1>

A(ivj) - z
L [h0k, 1~ 1)] oGk, 1-1)

¥

1= j = 2.3 ...,k

where Fij is determined by the condition that

(i D .

1j = 0, i.e., that (2.1-14) is satisfied.

A(i—l,i) - A(k,i—l)

If we define for i = 2,3,...;k we may write

(1,3) _ (1-1,3) : -
A FU[A ] 125018

AL,

Rewriting (2.1-10) thru (2.1-13) in our new notation we have
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4

(2.1-15) (Ag-—lsj) - N, Agi-lsj) r=d, 8% ]
(2.1-16) | Ag-l“j) + Aii‘l’-’) N rf¥i, s=j
(2.1-17) Aﬁ"l’j) + ALY Ny N Ag‘l’” rei, 5=}
(2.1-18) ] AE:-]' 2 otherwise

Since Aii’j) =A_ (r=12...K forall (i,J) we have

_ (1,3 _ ,0-1,9) -
(2.1-19) Aij Aij + A1i Nij Nij Ajju
We claim that the result of application of Fij in some order

is to reduce A to a quasi—diagonal form. That this is true can

be seen from the following lemma.
LEMMA 7. 1f Aii‘l"j)so for s >r; for s < j where
s<r<k; and for s = j where j<r<i-—1 and if N is

1y =
S’j) =0 in (2.1-19) then A‘Y'3) =0 for

rs
s >r; for 8 < j where s <r<k; and for s = j where

chosen such that A

j<r<i,

Proof.
(1) r#1, 8¢}

(1,3) _ ,(1-1,3)
Ars Ars by (2.1-18)

(1) r=1, s <1,



since A

since A

By (2.1-15)

(1,3 2,01, _ g L0110
Ais Ais Nij Ajs

= 0

s are, by hypothesiz, null matrices.

(i-1.9) (i-1,3)
i and Ajs
(1i1) r =1 s> j.

By (2.1-15)

ST DI € S 5 ) RN € S0 D

is is 1j jS
- AL
1s
(-1,9) 14 lower trisngular.

(iv) r<i, s= j,

From (2.1-16) and the triangularity of A(i‘lsj)

(1,9 o ,U-1,3)  ,G-1,5)
Arj Arj * Ari Nij

- (1-11».1)
Arj

From (2.1-16)

(1.9) _ (1-1,9) , ,(1-1,5)
ALy Ay Ay TN

(vi) r =i, s = j

1,9
Aij 0



by definition of F

13"
Comment: We have proved more than the statement of the lemma.
Indeed we have shown that the only elements of A(i—l”j) which are
(1-1.3) .
: >1i.
altered by Fij are Akj » k2i

Thus the sequence of elementary transformations FZl,F3lnuaos
Fkl; F329F"2,.,.,ugl?kz;u“;l"ksk_”1 reduces A to a quasi-diagonal
form whose diagonal blocks are precisely those of A.

Let X denote the matrix formed by the multiplication of the

E taken in the same order as the F .. Namely,

ij 1]
k-1

X= X_T T-T By

=l >j

Then X—lAX = Q, where Q 1s quasi—diagonal with Qii - A11°

But from (2.1-5) and (2.1-6)

Thus N = X and we have finally,

THEOREM 1. For a given ordered Schur matrix A = (Aij) of

order k, let N = (Nij) be the sp—trisngular matrix such that

for i > N1 satisfies

3

- p - (1_1)j)
Ay Ny + N Ay = Ay

and such that

25



N, =1 (1=1,2,...,k).

Then

N laN = Q

where Q is quasi—diagonal with Q11 = Aii (i =1,2,...,k).

26



Section 2.2.

Introduction., We shall begin this section by determining an

A( 1—‘1 3 j)
rj

expression for the slemenrs in terms of elements of A

and N. Using the integral representatior formula for Nij given
in the Appendix, we are able to express N as a sum of cervain
matrices each ot whose elements are integrals of certain functions
of the elements of A,

Using the above represencation of N we are able to give a
bound for Cv(N)“

By further restricting the form of A we are able to give a
bound for a condition number which does not require the explicit

computation of N,

2.21. A representation for N.

We begin with the following lemmas.

LEMMA 8. For j +p <r,

P
(3*+p. D) ‘
2.2-1) AR A . ¥ ., N =1
( ‘ r3 PR % o R L PE R D I

(j=1,2,....K).

LEMMA 9. If r > j.

e

1
_ (r=1.3)
(2.2-2) ArJ (gj Ar( n”,

lemma 9 is a particular case of Leoma & where p = (r — 1) - j.

27



Proof of Lemma 8. For p = 1, we have by (2.1-16)

AGHLY) A:j,j) + Al 20y

rj 3 r.j+ NyeL, s
-l (ke
A A Niayg

Arj +'Arwj+1 Nj#l,j
1

- géb Arﬂj+4 Nj*‘yju

The validity of the next to last :tatemen~ follows frow Lemma 7.
Assuming now that (2.2-1) holds for p — 1 we have by (2.1-16) and

Lemma 7:

RS LT DENUS L o 5 D RS b o B0 D

r) f rp o Vitp,y
AT e N
p—l
T Eo Mot Nt T M Vs
p
" Zo Meat Nt

which 1s the statement of the lemma.

We now reproduce an integral representation for Ni The

y°
proof of the validity of this representation and related results
are to be found in the Appendix.

THEQOREM.

-A t At
- _ 100 11 ,01-1,3) i) ,
Nij 06, e Afj e dt .,

28



Ler now A = A — dg(A) . A 1s then a strictly lower triangular

matrix. Define now

)
x{Oﬂ _—
‘ ~-A_t At
K‘l) - (KQI)) where K(I) LI Jnoo e ¥ (a A(o)) e %5 dg,
L& rs 0 rs
-A__t A v
B o (X)) ppere KB w o T GRY o8 g,
rs rs 0 re
or in general,
\ - SR A ¢
X(ptlj . (A(p#lﬁ); A(pfl) e . P QG A(p)) e 5% 4r.
rs rs v0 s

The above matricez will nct be defined in all cases when the eigen—
values of A are complex. Ir this case we alter the definjvuions

to read:

PR

aler) o xietl)y o alel)
rs rs

__ poo 16 7 -16 ]www [19 ]
‘/8 e’ axpie AT (A A )rs exp|e Asst de

where © 1is determined by the eigenvalues of A and is given by

Lemma B of the Appendis. Noting that for anry lower triangular
Bt.

matrix B, e is lower trtangular we see thar the diagonal entries
of A and hence of K(l) are all zero, the first two diagonals of

vanish; indeed X(‘) =0, r>k.

2

We are now able to cepresent N explicitly as indicated 1n the

2¢



introduction. Namely, we have the following theorem.

THEOREM 2. If

SR C) RN (8

(2.2-3) M=T1+A" +1
then N =M.
Proof. ij - In (j =1,2,...,k) which agrees with the above.

M(j =0 for { <j according to (2.2-3). But N(j = 0 for

{ <j also, since N 1is lower triangular by comstruction. Asgume

now that
- M1) 2 L kL),
N“ (I +A + A + + A )‘j, y<f(<i.

Then, since

N .o e—Ai+151+1" A1) fjjt de
i+, ] 0 141,35 ~

and

1
(1,3)
A1) (gj A, Ny

we have from Lemma 9

-A t {1 At
- oo, it il i3
N1,y = ~Jo ¢ {gj Ao N(j} e " dt

-A . i At
== T {‘EJ Ay, (Bgy+ gy + oo+ RS 1))} e Ve

-A t )i At
o O Titl,itl ~ A1) L (kL) 13
(/(; e {Z Ai+1,((I“+A“ + +A(j )‘} e dt

(=] -
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~A t [’
o il 141 ~ ~(0) > (1)
=-Jo e ]'(AA dia, g POy gt
At
(k—2) ~ ~(k-1) 3]
+ (XA dywp,y * KR ):H'lsj}e dt
~(1) ~(2) o Mk~1) | k)
S R N R O R

~1) o 2(k-1)
= (1T + A + + A )1+1,j

since Ars - A for r > s; X(k) = Q and I 0. The above

s i+l,] -

induction step completes the proof.

It is appropriate at this point fo consider the behavior of N
as B approaches normality. Let us consider the given matrix B
and A = U*BU where A is an ordered Schur form and U is unitary.
We put

A=D+ M,

where D denotes the diagonal matrix whose main diagonal coincides
with that of A. Since € is unitarily invariant, [e(B)]2 =

(e(A)]2 - [G(D)]2 + (G(M)lzu It follows that

2 n 2 1/2
€M = ([e(®I° - §F
L 1=1

is independent of the special choice of ordered Schur form. Noting
that B 1is normal iff €(M) = O (see [19], Theorem 10.3.8), we see

that B and, from the continuity of the Schur form, A approaches

31
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normality as €(M) —> 0 or, what is the same thing, as the off—
diagonal elements of A approach zero. The elements of the
matrices x(i) 1% 1,2,....k ~ 1 depend continuously on the off—
disgonal elements of A and thus approach zero. Finally then,
N —~—> 1 continuously as B aproaches normality.

2.22. A bound for the condition of N. It is now possible to

give an upper bound for a condition number cf N.

Let.

(1) | ~(2)

L=Aa"" +4 o 4 A1)

+ oo

Then L is strictly lower triangular and A =0, r >k. Since

N=T1+L,

2

N! - (1 +L)_1 =T —L+L°— - (—1)1"l Lk‘lo

We have then the following theorem.

THEOREM 3. For any multiplica‘ive norm 2/,

M < v [UD + Y@ + o0+ W

where L = K(l) + K(Z) + e + X(k—l),

2,23, Restricted Schur forms and a new bound for ClﬂN)a Use

— — —— ——— ——

of the bound for C,(N) given in Theorem 3 requires, of course, the

(1)

calculation of A , 1 =12, ...,k = 1. Due to the prohibitive

nature of the calculations required we shall derive a new bound for
Cy(N)u This bound does not require the calculation of the Z‘i)

but, further restricts the Schur form and does not in general yield



as sharp a bound as that given by Theorem 3.

We begin by finding a4 bound for the norm of X, where
x_3_‘/.00 e—At, ¢ eBt
0

and A and B are lower triangular. It will be necessary to make
certain assumptions regarding the eigenvalues of A and B. We

need however, to prove the following lemma first.

LEMMA 10. Let B(t) be any Riemann integrable matrix function

(i.e., each element of B(t) is integrable); and let Iii-1| denote

an arbitrary matrix norm,

1f

00
A ‘JG B(t)dt

then

N

1AL 5‘/0 IIB(t)ildt,

Proof. Let
X
A - B(t)dt.
() = /0% B()
Then

A'(x) = B(x) and Ald) = A,

By a result of Dahlquist [7] we have for every matrix A(x)

and norm |(l-l] that

(2.2-4) (TAG) 1Y < THAY( .
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Integrating (2.2-4)

AR 1Y ~ 1A < % A (D) 1ide
(x) (0): *“6 ()
or
X
FHAGR L < 7% LiB(ed ide,
<dp ¢
Hence
. oo
LAl < iB(t)iide.
<
We now turn to the prcblem of finding a bound for the norm of
X;

X = _‘(/000 e~At C eB": d:.
0

We shall assume that
(1) A, B are lower triasagilar matrices of order n,. ng
respectively.
(2) The diagonal entries: of A(B) ars all equal to some
cons*ant we shail denote by LN (XB)V i.e. A(B) has
only one eigenvalue N QXB) repeated n, (nB) rimes .

(3) », >
A and B can then be writren as

A = NAI + LA
B = XBI + LB

where LA and LB are strictly lower triangular.

Since XAI and XBI are scalar matrices thev commute re—

spectively with Lp and 1lg. aod we bave
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—At —(XAI+LA)t | —xAIt —LAt
e = e “ @ e
Bt ()‘BI+LB)& xBIt LBt'
e = ¢ = e
4 a,—~1 n —1 X s
| O Te AT B L A
e—At ceBt _— B "A Z v (_1)r .% c ;3 ttfso
& r. EH
=0 =0
For any anis—criented multiplicative morm i1:1! we have from
Lemma 10 that
(XB-X ye "l gl
(o] A ’ 1 L § _r+s.
NXI </ e Z Z’ =T UL 0T v L e e
r=0 s=0
n,- nB 1 (
Ao=h, It i
) r & Qo B A r+s
= {1C!| 2 Z {V{uLAH |LB'1 f' & T 1
™0 g=0
g RNV Nt
S Bg L [ "LB‘ n —t rts
ol ey Z z UQK . 010 e vt Tdt
AT =0 s=0 | T \*aT?s J
n 1 L\ 8
el g' “1§ <r+s) HLH /’1’3“'>
xA - XB r=0 s=0 \. A_-XB

Note that

R S —— R+S k p_k-p
2 z < ) Krys < ki —*?,5'7‘2"‘—
8 . d
r=0 s=0

RS k

~5 3 ( )xPyk"p
k=0 p*0 P
R+S

- z (x +-y)ko



We have, upon substituting ‘A - In‘LAI i, (B " HLBIi

LX<

n -2 k
it A? (fé_f_fg>

T weo \Na TR
or
+‘ -
(2.2-5) kit g nAEBqu
SN o B m
N |
W

This matrix X 1is, of course, the solvtion of ~he matrix
equation —AX + XB = C provided )‘A > )“B' Yf however we only know
that XA% )‘B the solution to the matrix equation is given (see
Lemma B, Appendix) by

P

X= _J(;m e19 expl—-ele At] C exp%.eie Bt]dt.

where €@ 1is given by the above <ited theorem. We may then general-—

ize (2.2-5) in the case where )‘A> ')\.Bo

LEMMA 11. Let A, B be lower triangular matrices of order

n n

A’ Mg respectively, with repeated roots )‘A"' )‘B respectively. If

Ay >y and

X = —J(;w el'e exp[-—e.ie At—! C exp [eie Bt]dt:
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is a solution of the matrix equation —-AX + XB = C then

ntn -2
A B
11CI | k
WX S 9557 X q
I, LBi ka0 AB
‘A i ‘B

qAB'TSTA—xBn

The proof is similar to that used im deriving €2.2-5) in which

lkA —‘XBI replaces xA - kB and will not be repeated.

DEFINITION. A restricted Schur form is ar ordered S:chur form

in which the sets S1 introduced in sectiom 2.1 each contain only

(repeated) eigenvalue.

Let A= (Ai ) be such a form. Then we may write

]

A _=)21+1
rr r r

A =2 1+1L
ss s s

where A__ (A ) 1is of order n(n ) and L and L are strictly
rr 88 r s i s

lower triangular matrices. If xr:> Xs let

where
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and ‘r - IILrII, (s - IILB!I for an axis oriented multiplicative

norm, I|!-}J|l, From Lemma 11,

||;/’°° 1 exp[~e1° A t] c[eie A t]dtll <y_ licil.
0 re 88 = 'rg
Sinre

“p) _ _ poo 10 [ i@ ] ~ ~(p—1) [ie ]
Ars ,/8 e exp|-e Arrt (A A )rs exple Asst dt

NAP oy iR ALy
rs - I8 rs
For r > 8, let

(2.2-6) Yif) = )Y 14 (1 11A loeee

e n__..n
s<n1<n2< <np_1<: p-1 p—1l p-2

IlAn s!l Yrsyn s 7Y p=1,2,...,k -1

1 p-1 1
v . i1 g
Is rs
For r <s, let
(p) X
15 =0 (p=1,2,...,k - 1)
¥ i1
rs rs

LEMMA 12. For r >s, p=0,1,...,k -1

38



AP | < ¢P)
re - rs

Proof.
RO e
rs rs
(1) _H_ oo i@ [ ie ] ~ ~(0) ['10 ] H
A /g e expl-e A_t| (KA) exple’ A_t|dt
<Y, VA1
=Y, 1A I
- Y(l)o
s

Assuming the inequality holds for p,

~(ptl) _3| o 16 [ i@ ] ~ ~(p) [ie :
I!Am3 [ |—£ e exp|—e Arrt (A A )rs exple Asst.]dtH

<v,, HERP)
<Yy ” X A K(P)”
- Is ™m ns
s<n <r P p
P
<V, S a1l uxgpgn
P
<v FiA__ 1] I 1A Vi
- 'rs m ~ n 9n_
s<np<r p s<n1<n2< <np p’ p—1
1A bl oo 11A. 11y Y oo y
nP—l‘mlﬁ“Z e n.s np-],s "8
il VIA_ 11 TIA | weo

n__.,n__
s<n1<n2< <np<r P p-1’ p—2



Y o oe Yn‘

. Y.(p+1)
s

which is *~he statement of the lemma for p + 1.

Define

2

~(p)
(HArs i)

() _ (v
Y ‘ (Yrs )

z>
[}

(IINrsll)
for r,a = 1,2,...,k, p=0,1,....k — 1.
Then, recalling that

(1) (2) (k~1)

N=I+&"7 85 400 +X

we have

N SI o+ AW L2 44 30D

L + YD Ly, (D)

IA

for K(p) < Y(p) in view of Lemma 12.

If 3/ is a monotone norm

I < rr + ¥ 4y @ 4Dy

But, as shown in Lemma 3, the function f defimned by
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f(M) = 1)(ﬁ0 for all k x k partitioned matrices

We nave then *he followiag resulr,

THEOREM 4. Let A = (Atj) be a restricted Schur form, {l-||

Then rbe functicn € definzd above 15 4 norm and

(1)

fN) < (1, + Y (k«l))

v s ey

shere the elements of Y(p) are given by (2.2-6).
Writing
N=T1¢+P

with

pe it LD, L X(k-l)’

Nlm(ep)y o 1P ap? o oo (WL Pl
{2.2-7) [@3 <1, ot R+ [;2\ . e [@]
< I+ P (3)2 PR *,(p)k“l

k

I\
. r N 4 .
since P71 < (B} for all r.
\ Ak~
R(l' #‘3(2) * voe 4 A('k 1

. 4yt

Noxing that. P <
1y (2

EY' + ¥ 4 oo

and sevting I+ Y(l) * Y&z) L SECRICI Y&k_l) we have from (2.2-7)

(M "1 <, 4L 2Ly oo s L&K_l)

M, 1is a norm.



For any monotone norm <2/,

o 2 k-1
DJIN T <L)+ L)+ (D)7 4 e+ (DWIT

-1 )
Setting f(N 7) = JIN"1 we have by Lemma 3 that f is a

norm of an and counsequently arrive at the folliowing thezorem.

THEOREM 5. With the same hypothesese as in Theorem 4 we have

C M = £(N) £(N )

< Y+ D) [a)(:[k) D)+ W% e+ L:)(L)lk'l’]

where L = Y1) 4 y(2) 4 oyl L (P

defined as in
(Z.2-6).
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CHAPTER 3

Introduction. The representation for N given here is
identical to that given in the preceeding chapter. This follows
from the uniqueness of the solution of the matrix equation
—AX + XB = C guaranteed by the sesumption of an ordered Schur form.
The preceeding chapter has demonstrated che formal methods for
biock elimination and at the same time indicated the complicated
process of determining N. Computationally it will be seen that
the methods of this chapter are superior to those of Chapter 2.
Proofs given in that chapter shall be adopted here specializing to
the caxe in hand. The development of this chapter is more straight—
forward than that of the preceeding and is recommended for practical
applications. Chapter 2 should then primarily be considered for its

theoretical value.

Section 3.1. A scalar development for N,

We present here a scalar analogue to the material developed

it 2,1. We again assume that A = (A1 ), 1,3 = 1,2,...,k 1s an

3
k
ordered Schur form with A of order n_Xxn, with Y n_=n.
13 i 3 o 1
Letting aij denote the (i,j) element of A considered as a

scalar matrix. we say that the pair of indices (i,j) with {1 > j

1s of type P and denote this by (i.,j) € P 1if is not con—

aij
tained in any of the diagonal blocks of A considered as an ordered

Schur form.
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If € denotes the 1 x n row vecror whose only non-zero

«lement. appears in the (+h posirion 1t follows that

TS fo 5#1
R &, = 1 -
1 J j i tﬁ J @

and

a = e A e?
! J

‘lj

DEFINITION., The matrices &

£
13 defined by

T
% - [. R wn e T « e 2
&13' 8,5 SRITE 1M %

where nlj 1s av arbisrary compiex pumber for

otherwise are called P—eliementary matrices.

(-1

i‘n r ® %
(énj)rs o h Ty T boed

Y ctherwise

The following are i1mmedia“e resu.rs of the above definitions.

-1 .
éij[eihej.nx‘jj - gljﬁei,e 1.

3™

Lf

o .
(3.1-1) N ETT &, . - W &
1 ey 1

1> i

(1.3) ¢ P and zero
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3 Sy
That is
f] r:a:sﬂi
(Nj)rs * 3 ntj s =]
0 otherwise

Furthermore

Letting

0
{3.1-2) N = TT N

I

we have

1 re o5 g

r
|
]
N .
rs ‘ .
n otherwise
Is

We proceed, as in Chapter 2, to eliminate one by one all those
elements whose subscripis are of type P. In this manner we shall

again arrive a* a quasi-diagonal matrix.

DEFINITION. The function ij defined on all matrices A of

order »p by

-1
flj(,A) &u A éi)
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is called a P elementary similarity transformation.

Ler

L
A flj(A)u

Using results similar to (2.1-7), (2.1-8 and {2.1-9) we have

{3.1-3) TP hlj a5 r i, s ¥ j
(3.1-4) arj ta mij r# i, s=®j
(3,1-5) a;s ¥ aij - &, n1j - nij aj] r=4i g=j
(3.1-6) L_are otherwise

Only elemenrs 1n rhz ith row and those in thej:h rolumn whose
gubscripts are of type P are affected by ij and Air - A,
r=12 ... k.

By (3.1-5), a;j = 0 1f and on.y 1f there enists a complex

Aumbe r n1j such that

{3.1-7) —a .o _tn . a, =2

The denominator never vanishes. for (1,3)) ¢ P which precludes the

possibility that a,." a]ja



We now study the effect of successive applications of P-

elemencary similarity transformations, £ where at each stage

i3’

flj (nl_] 18 chosen such thar equations similar to (3.1-7) are
! J

satisfied,

Let

(1.1) .
A - fllﬁA) A

©

°

Al fij [A(i—l,j)]

where fij is chosen such that ai?’j) =0 1in (3.1-7). We may

then write

(1.3) _ &-1 ,(1~1,) .
A gij A &us (1,3) # (1,1)

ALD L,

Rewriting (3.1-3) through (3.1—6) in our new notation we have

ai:_l’j) - ny aii_l’j) r=4i, s¢j

(1_19.1) (i"l»j) -
(i J) ars -+ ari ij r * ip s j

(3.1-8) ars’ = {

(1-1,3) . (i-1,3) (-1, .. -
aij +~aii nij ajj r i, s 3

a(i'l’J) otherwise

L IS
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Since &

1
(1,9 =3 , r=1,2..,..n, we have
rr rr

(19J) - a(i—lnj) +

{3.1-9) a‘ij 1j aii ni] - ni-J an

We claim that the result of applicatcion of fij in some order

18 to reduce A to a quasi—diagonal form. This follows from the

neyt lemma .

LEMMA 13. Suppose we have aii—l’j) =0 for s>r; 8<]

with s <r<mn; s=j with j<r<i-—1 andlet nij be chosen

guck that ai}’j) =0 in (3.1-9); then a::—l”j) =0 for 8 > r;
3<j with s<r<m; s=3j with j<r<i,
The proof is amalogous tc that of Lemma 7 of Chapter 2 and

will not be repeated. As in Lemma 7 the proof shows that the only

(i‘lsj)

eiements of A which are altered by £ are [A(i—l’j)]k

11 ¥’
k >1 with (k,j) e P.

Thus the sequence of elementary transformations, determined by
elimina*ing each element with indices of type P, progressing down
each column first and then by columns left to right, reduces A to

a quasi—diagonal matrix whose diagonal entries are precisely those

of A.

Ler X be the matrix formed by the multiplication of the éjj
taken in the same order as the f .. Namely

1)

n

x=11 1T &,

=1 1>3
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Then X . But

AX = Q, a quasi-diagonal matrix with Qii - Aii

from (3.1-1) aun. (3.1-2)

n 5
ﬂ l—[ %ij =N,
=1 1>)

Thus X = N and we have:

THEOREM 6. Let N = (nij) be a triangular matrix such that

- - (1-’193) .
nij satisfies a, mxj + n1j ajj aij for (1,3) € P;
nij =0 for (i.3) ¢ P except that = 1, i=1,2....,n;
then
NLlan = Q

; - 1
where Q is quasi—diagonal and Qii A11 1= 2 2 0o ke



Section 3.2. A bound for a conditionm number of N.

This section is devoted to the determination of a bound for a
condition number of N, where N was defined in the preceeding
section. We begin by finding an expression for the element of the
which involves elements of A and N. Finally we

find an expression for N which involves only elements of A.

LEMMA 14. For j +p<r,

P
Gtp. 3)
3.2-1 = n,__ .
¢ ) arj 2,:0 .rsjﬂ 3+, 3
Proof. We shall prove this lemma by induction on p.

For p =1 we have by (3.1-8)

G+,3) _  (3,3) (G
% %3 tAr i T4, 4

- (n j"'l) . (npj-l)
) Targn TiH,j

(3.2-2)
8y T A4 My, g

1
T gy fraH Mt

(3.2-2) holding by virtue of Lemma 13.

Assuming (3.2-1) holds for p — 1 we have by (3.1-8)
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NECTNCE S ORI Ch o IR

rj rj r,j+p e,
(3.2-3) - aii*?_l”j) + 2 f4p nj+p 3
p—l

=

{éo N R

P
" (go ar»j'o"( njﬂsj

(3.2-3) holding by wirtue of Lemma 13.

In particular, we have for p= (r — 1) —j

LEMMA 15. If r > j,

S O

a_, n, .
rj {5 r{ {}j
As we have seen before
a(i—l,,J)
nij "—a—ij—:—a—' for (i.j) € P.
A &
Recalling that the diagonal entries ajj of A are its eigenvalues
we may write xj for ajj and xi for a . Then
&(1‘191)
o wmtl
SHERE A

Let
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and

A= A - diag (AlﬁAZ,oo.»Ak)

X is then a (strictly) lower triangular scalar matrix such that

~ {’aij for (i,j) € P

0 otherwise

Define
30 .y

(1) | (1) _ (> x€0)
A : .AU (A A )ij o’ij
and in general

(r-l))

O G I
A : Aij (A A

13 %1y°
Note that K(r) = 0, r > k since each successive multipli—
cation by A introduces at least one new diagonal of zero block

matrices.

THEOREM 7.

I S RS

Proof. n,, = 1 by construction and (K(o) + K(l) +

3]
] = 0 for (i,j) € P, which agrees with the above.

+ Z(k'l))1



Assume now that

n = (B0 L2 +X(k‘1))‘j for J<f<i, ((,3) eP

L&
then
D)
BT W Y T I
mi41, e T LR

‘ )
) <(§j 41,0 My ) Cielg

141, “(j> 9141, §

[ ]
" /\\
-
S
w2

~(0) | (1) e (k1)
((A + A + + A )(j} 61+1,j

(=3 0

i
- ~ M0) 1) o k1)
gj 844 ( (A(j +A(j + +A‘j ) di-f-l,j

) e ey FOD
[(‘“‘ e L e A G )1+1,j} Oi41, §

-2 L7 gD R

i+1,5  TiHl,3 itl,§  1i+l,3

= &0 L2, +x(k—1))i+1“j



o MK «0)
since A 0 and A1+1yj 0.
Latting L = K(l) +»K(2) + o0 + K(k“l) we note that L 1is

strictly lower triangular and L' = 0, r>%k. Thus

Nl e+ tator+1?- one (¥l kL

THEOREM 8. If o) is any multiplicative norm,

C (M < V(I + L) (D) + VL) + o0 w w1 .

(r)

Inasmuch as the elements of A and hence L are easily com—

putable it 18 not necessary to introduce a restricted Schur form.

54



CHAPTER &

INTRODUCTION. Twc applicattons of the results of the preceed—
ing chapters will be considered here. Sec%jon 4.1 will deal with
bounds for norms of powers of a1 firxzd non-normal ma*riv. Bounds
for the norm of the irvers= of a fixed matrix are developed in
Section 4.2 and applied to the problem of cstimating residual
vectors and matrices associated with the approximate solution of

lincar svetems and approsimate inverses.

Seccion 4.1, ITterated Matrices., The interest for bounds of

norms of certain martrices arises prin-ipally from the study of
finite differznce s3-hemes for ~olving hyperbolic and parabolic
differenrial equa-ions. Such bound: have been given by Lax and
Richtmeyer {l8]. For arbitrary matrices Gaurschi [9, 10] and

0s irowski [24] bhase neveloped 2st:mates which require some knowledge
of the Jordan canonitcal form. More recew iy Henrici [14] has given
bounds which depend upon the speciril radius and a certain measure
of non—normality introduced in his paper.

For normal mairices we have of course
(4.0-1) o(BT) = Af

4s a simple consequence 2f rhe fact that normal matrices are uni-
tarily similar to dtagonal matrices and o i35 both a unitarily

invariant and an axis-orieanted nom.

5%



In contrasr to the above results for non-normal matrices,
Theorem 9 below gives an estimate for o(BY) which depends upon
all the eigenvalues of B according to their multiplicities, and
a condition number. These rezults reduce to (4.0-1) for B normal.
Let then B be a8 giver n X n matrix and U, a unitary

matrix such that

A = UBU®

15 an otdered Schur form. Le* N be chosen as in Theorem 6 such
that Q = NﬁlAN is quasi—diagonal with Q = diag (Qll,szyuo.kak)

and Q A of order a2,, 1 = 1,2,...,k.

11 M i
Thus

Ar - NQrN—I

r r . r w1
N diag (Qll°Q22’"°°’Qkk)N .
If o represents the spectral norm, we have using Lemma 6

(4.1-1) 6(A) < C(N) oidiag (Q[;:Qy,0-+-:Q)]

A

C.(N) max o(Q")
1< i<k ii

Let Q be written as a sum of a diagonal matrix D con—

i

taining only its diagonal terms, and a strictly lower triangular

it

matrix, Li“
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D +1
Q,=Dd +1

and

For an arbitrary ordered Schur form the D1 are not neces—
sarily scalar matrices and consequently will not commute with the

Li’ preventing us from expanding (D1 + Li)r according to the

binomial theorem. But zince D1 is diagonal, if we expand Q:i

any term with more than ni -1 11°s vanishes. Thus

(4.1-2) o(Q)) < 4] «r({)/_\:'l( LR N QNI P 11t

i nl—al i
where ‘i = G(Li) and Li a XQli
From (4.1-1) and (4.2-2),
o(A") < C (N max AT+ (Fyatlyg o
- 1<i<k 1 t 1

r-n+l n -1
r i i
+(ni~1)A1 { }

Noting that B = U*ATU and recalling that ¢ 1is unitarily

invariant we have:

o(8") < CG(N) max A; + ( I ) A:'l (1 + oes
1< i<k
™-n 4+l n -1
" r i i
t ni—J,) 8 (i } °

-



Tha estimate holds for any ordered Schur form. Indeed, since
specification of the ordering of the eigenvalues does not uniquely

determine a Schur form we can conclude:

THEOREM 9. If A

p >0

r . r . r r-1
o(B") < min[cakN) m?x N ) A ‘i +

o(B") < min[Co,(,N) mex 1ﬂ r=0.1,...,M-1

63" =0, r>M

where M + max n, and where the minimum is taken over all ordered

Schur forms .

If B were normal, any Schur form would be diagonal implying

that N = 1. Thus GU(N) = 1 and G(Br) S'max.A: = xge Since
x; < 0’(131'),v O(Br) - x; in agreement with (4.0-1).



Section 4.2. Bounds for inverses. Let B be an arbitrary

ron—singular matrix, b a given vector and ¥ an alleged solution
of Bx = b. If we define rhe residual of ¥ by r = Bx — b, and

1

~ - —1 ~
if 2 18 a vector norm, the error x -~ B b= B "'r of x can

be estimated as follows:
~ -1 -1 -1
2J(x —B "b) = (B r) < P(B ) V(r),

where ¢ denotes any matrix norm compatible with 2J). Similarly,
if X is an alleged inverse of B, and if 2) is any multipli-—
cative matrix norm we can calculate a bound for 2)(; - B—l) in

terms of the residual matrix R = BX — I,
¥ -1 ~1 -1
DX -B ) = J(B R < (B ") UR).

For both problems we require a bound for 2/(3-1) . Such a
bound is, in principle, easily constructed if we assume that B is

similar to a diagonal matrix D:

B = sps L,

For, assuming that ) is an axis—oriented norm and noting that

1~1

B! = sp7ls™l e have
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(4.2-1) 20 <c)

B 1

If B were normal .  then S <¢ould be taken unitary and the
spectral condition number of S would be 1. In this case

6B <h .
B

and in view of Lemma 4.

o3l = 1
B

Normal marrices are, of course, the only matrices unitarily
similar to diagonal marrices. Estimates for non-normal matrices
are not so easily derived. We see for instance thal the bound
(4.2-1), 1f ar all applicaple. requires the compiete diagonalization
of B.

1f we let the function f' be defined for all real x >0 by

fn(x) -y + K‘z e x!l

we note that £ and x~1f are monotonically increasing for x > 0O,

and that

lim x_l fn(x) =1,
X —> 0+

With the notation of the preceeding section we have then:

THEOREM 10. If B 15 non—singular and non—mormal, and if

1

{ , then

PR
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n
-1 c (N £ Gy st
o(B 7) <min o m? —~EI-—- N J

woere the minimum is raking over all ordered Schur forms.

Proof. As bafore we wrize Q =D + L
Tm— 11 1 1

-1 -
- + L
Qil (Di Ll)
-1
T 1
; [DI(I * D: Lt)]
(x ottt
i L 3

~l oy 4L ,
We canrot expand (I + Dl” 11) sccording to the binomial
expansion singe Dl t8 nor wecescarily scalar  But if we expand

withour commuting 1~ 1s still true tha* any term with more than

n, -1 Ll“s varizhes  Thus since
D P LY <oy 1) =ty
B S T | MY 1 71
we have, upon setting
1y
gy ey
. n -1
—L. 3 2 K o0 u - 1 _1
6(Q11)5(‘1.+g1+gl + *gl )Al
™
P8
g |3

1



In view of

—1 —1
o(Q ) = m:x "(Qu)
and
o)) = oa D,
n
) _1) f i(;i) .
o(Q < max A
B | L7 1
and
n
4 £l
6(B ) < CG(N) m:x T A

fcr every ordered Schur form.

The theorem follows.
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CHAPTER 5

Spectral Variation and Eigenvalue Variation

Classical Results. Let the matrix A = (alj) have eigenvalues
xi and let B = (bij) have eigenvalues By i=121,2,...,n., The

quantity

s = s, (B) = max min lp, — A, |l
A 1gige {lgjsn t j}

is called the spectral variation of B with respect to A. It is,

in effect, the maximum distance from any eigenvalue of B to lhe
spectrum of A. No one—to—one correspondence between eigenvalues

is 1mplied. However, the function v defined by

v = y(A,B) = min max ix, - p }
-4 lsiSn 1 n(1) }

where the minimum is taken with respect to all permutationa of the

set (1,2,...,n) and which is called the eigenvalue variation of
A and B does imply a one—to—one correspondence. We have, of
course, v(A,B) = v(R,A) whereas sA(B) ¥ sB(A) in general. In

addition
SA(B) < v(A,B)

for all matrices A and B.
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One of the best available bounds for s and v for arbitrary
matrices is given by Ostrowski [22]. (See also [24] p.192).
Namely, 1f M« max (ia {b_ i) and 1f the norm Q is as

»
1<i.j<o M u
defined in Chapter 1, then

§ A(B) <

A
™~
=]
+
)
R
x
=
Q
-8
>
4
-]
L
| N

and

(A = B) 11/n

J(A.B) < nin +2) M | S “

That the exponent 1/n in these bounds canmot be improved in
general may be seen by considering an zzample due to G. E. Forsythe

(see [281. p.%05). 1In special cases. however, improvemsnts are

possible.

If A is similar %o a aiagonai matrix D,

A= sps t

and 1f <) 1s any axis-oriented lub norm, “hen Bauer and Fike [31

showed that
(5.0-1) SA(B) < Cv(S) J(A - B).

If further, A 1s 2cwmal. S may be chosen unitary and we

find for any norm 2/ majorizing the specrral norm
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(5.0-2) 5,(B) < V(A - B),

1If A and B are both normal and V= ¢ it follows from a
result of Foffman and Wieland: [15] that (5.0-2) is even valid for

the eigenvalue variation:

(5.0-3) v(AB) < c(A - B).

This re¢uly has been used frequewntly by Bargmanu, Montogomery
and von Neumant 1n [1] for A and B either real symmerric or
hermt*ian.

A more recent result applicable to arbitrary matrices has been
contribured by Henrici [141. Berause of the part that these
estimates play 1n this chapter we shall develop the necessary
notation., Lhz:e: estimates depend in particular upon a measure of
non-normality which we defin¢ here.

If A is any matrix, w: recall thar (Mirsky, [19]) there

ex18t8 A unitary matrix U and a triangelar matrix T such that

A = UTU*,

T, the Schur triangular form of A, 18 no% uniquely determined for
4 given A, We put
T=D+M

where D denotes the diagonal marix whose main diagonal coincides

with that of T. 1% follows theo that M 15 a surictly {lower)
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triangular matrix.

If v 1is a norm, the 3)-departure from normality of A is

defined by
Av(A) » ivf P(M)

where the infinum is taken with respect to all M that can appear
in a Schur form. It follows that 4, fA) = 0 if and only if A 1is
normal .

Let the function g * g(y) be defined for all real y >0 as

the (unique) nonmegative solution of the equation
grgit o tgt =y,

The function g 1s the jnverse of the function f defined in 4.2.

For later use we note the relations

(5.0—4) lim yfl gly) = L
y = ot
(5.0-5) nly <gy) <y, 0<y<n
(5.0-6) g(n) =1
(5.0-7) (nﬂly)l/n < 8ly) < ytim, yzr

(5.0-8) Lim y'l/“ gly) = 1.
y—)@
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Henrici’s resalzs may now be given,

THEOREM (Herrici). ler A be a mon-norral wmatrix, and let

B-A70. 1f o) tg ary rore majorizing the spectral porm. and if

o (A)
2

MY\

o
. Y
S Hd e L. AN
£5.0-9) a8 < v (B~ A
and
(5.0-10) PLAB) < (It ~ 1) ég;§ 2i8 — A),

(5 .0-53%. (5.0-6) and (5.0~7) may be u<ed *0 r-nder rhe bound
{5.0-9) ard (5.0-10) mors ewplicis., For 2)'B - A) bounded away
trom zero (5 0—4) shows ~hat 2¢ &4 fA) -3 0 (he satimate
(5.0-9% approa-hes (5.0-2) ., (5. 0-8) shows: -hat for a fixed pon-
normal A and for B —3> A rthe bound (5.0-9) i: of the sams order
as (5.0-3).

Tt should be mentioned that Wiglaandr [29] hid previously de—
fined a meazure of non-normality of 4 mavriw. H.s measure is ap—
plicable only to marrices whizh are saimilar 2 4 diagenal matxiy,
and requites the knowledge of a matrix afferzring the diagonalization.

Afrer deriving bounds for SA(B) and ~(A.B) wsing quasi-
diagoval represantarions we chal) make a comparison berween these

results and rbose of Henricl gisen abovs.



Section 5.1, Given an arbitrary matrix M, let us assume
that & unitary U has been chosen such that A = UMU is an
orderad Schur form and that A has been transformed by N into
Q = diag (Qllﬂsz,auoquk) as incicated by Th:-orem 6. Let
i=1,2,...,k.

A j=1,2,...,n, be the eigenvalues of Q

ij” i1’

i

Let B be an arbitrary matrix. We have from abovs:

N_LAN = Q - diag (Q119Q22»°°°.\Qkk)

D +1L
Q11 =Y i’

D being the diagomal matrix whose diagonal elements coincide with

those of Q11°

Let
N‘lnumn,
. —1
E=B-4, N EN=F,
Then
B, =F+Q.

Let. p be an arbitrary but fixed eigenvalue of B (and
hence of Bl) which is not an eigenvalue of A. Then (Q - }\II)"1

exists and
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0 = det (B1 — pl) = det [Q — pI + F]

= det [Q — pI det (I +(Q—pD) L M.
Thus

det 1+ (Q-pD Lt F =0

and —1 1is an eigenvalue of (Q — pI)—lF° By Lemma 4

a[(q - un7t F] > 1.

But
o(F) < C (N) o(E)
so
G0 ol@-m7] > i
o

(Di = pI) is non—singular since D contains only eigenvalues

of A and consequently
(5.1-2) (@ ~pD ™ = (O +L —pD
-1 -1
={o, -0 1+ @ -pn7 L]
-1 -1 -1
- [1 + (0, - p1) Li] ®, - D7t

Now
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-1

5.1- {1+ @ -pptr] =1-0 - pD T L

n -1

+ [(Di -7 Li]z - e [(Di - ”I)—ILJni_1°

The last sum extends to at most the n, - 1 power since

[(,D1 - pI)wl Li]r =0, r> n, . The validity of this statement can

be verified by noting that (Di - p1)~1 L, has the same (i.e.

i

lower triangular) form as L and that L; =0, r>n

1’ i’

Let p, = 6‘[(01 - pI)‘]']

O‘(Li) = (1
6(E) = e

Co,,(N) = x,

Note that

-1
Py & Tax l)"i —’“l " Tmin }x Y
1<ign, ['H 13~ #

From (5.1-2) and (5.1-3)

-1 n-1 n-1
_ -1 2,2 i i
o‘{[l + (D1 pI) LJ } <1l+ pi‘i + pi(i + +py ‘1

and



-1 2 o n, ni-l
(5.1-4) d[ini ~pD ] Sey eyt tp L
n
i.
. £ 7p L)
i
But
~ -1 -1
{5.1-5) 6} (Q — pI) = max ol(Q, — pI) .
(O R

Thus from (5.1-1), (5.1-4) and (5.1-5)

n
£ e, ()

:—e <  max 6[(Q1i - pI)-’l] <  max ——li—— o

T l<i<k 1< i<k

For some index 1 » { say

0
n
i
£ o(pi (i )
0 "0
e s T {
1o
(io "1
—<f ", L)
xe 10 10
nio
and from the definition of g
n Ay
8 019} ¢ p, {
xe - 10 10
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1 (*o
—— >
P, = n {
i i i
0 of o
8 xe
Then
——1-—< max - (i
Py, T1<igk Mif lac
o2
and
(5.1-6) min lx - pl < max ‘i
1<j<n, @ to] T <<k “1(__11 >
0 xe

Thus for any arbitrary eigenvalue p = n of B it is pos—
sible to find some eigenvalue of A such that (5.1-6) holds.

From (5.1-6),

| (i

min i}"ij Py S max n

1< i<k 1< i<k i i

S1is S g ;_e,

1< j<n

!

for r=1,2,...,n and
li
S, (B) = max minix —F‘IS max o
A l<r<n 1,5 0 M T Ticick “1(_!1 >
xe

THEOREM 11. Let A be a non-normal matrix, and let B—A ¥ 0.
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G(Li)
(S GECCICIEYY

then

Yy
SA(B) < max n

> C_(N) o(B - A).
1<i<k g i(yi)j ¢

Here Li and ni are as defined earlier in this section.

1f 2/ 1is any norm majorizing 6, we have since g 1is non—

negative and monotone increasing

o(L) o(M,)
ni[ (L)) 1 = “1[ o(H,) ]
g ~ T g =
Cd(N) c(B A)J (B A)Gv(N)
and consequently
(5.1-7) S,() < max —L1— ¢ (M) B - A)
l<i<k i
= = gy
where
G(Mi)

Y1 T 0 D - &)

Let now 0 < ¥, <y, and define X = g(yi), i=1,2. From

the monotonicity of x-l(f(x)) it follows that
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Y, i} f(xl) < f(xz) ) A
gly;) x x, gly,) -

Thus the function y[g(y)]nl' is monotonically increasing, and

we have from (5.1—-7) replacing c‘(Li) by L)

COROLLARY. If A is non—normal and B — A% 0 we have for

any norm -+J majorizing o

v, ,
(5.1-8) S,(B) < max —— 1 C AW J(B - 4)
Tl l<i<k M
=70 g )

where

V(L)
Y1 TGN IE B




Section 5.2, Comparison of bounds and related results.

Our object here shall be %o compare the results given by

Henricr [14]:

£48)

——X—— — s R e o vas——— .
(5.0-9) AR < - KB -B. 5 STy

g (y)

with that derived earlier (Corollarv ro Theorem 11).

1)(Li)

y
: - . —-...._1.___. — . -
(5.1-8) §,(B) < max CAM VB~ Ay, TN D(E- K

teishy l(:yi)

For this purpose, let

wAL )
v r

and note that

z
A i
i Cﬂ(N)

For those norms 2) such that 1)(Li) < AzﬂA), z, <y and we

have by the monotonicity of y[g(v)]—l

4
(5.2-1) A <«
n n
g (213 g (y)

Let K = G}LN)Q Then for these values of z, such that
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n oz,
1, i n
(5.2-2) g () >s8(z)
we have from (5.2-1)
z
R
gi(—_ﬁi_) g (v

Writing this inequality in terms of Y,

in)&N)

<

n, .
" g"(y)

g 1(yi)

Thus, for those valies of 7 such that z, <y and such
that (5.2-2) holds, the estimate (5.1-8) is am improvement over
(5.0-9) given by Henrici.

We shall then be inrerested in derermining conditions on =z

in terms of n, n . K such that

n
1, 2 o
g Lg)>g(2).
For this purpose let us introduce the function h(2) defined by:

o
n(z) = g™z) - g ¢ % )

and determine rhose values of 2z such that b{z) < 0., We may, of

course, assume that K > 1, for ¥ = 1 g(mpliezx h(z) <0 for
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positive values of z.

We begin by investigating the positive zeros of h(z).

Define
n, n-l n*l
px) = x + « 4 e px b
l'l1 ni—l'
4+ (L -K) x + (1 —-K) x 4+ o0 4 (1 = K)x,

LEMMA 16.

b(z) = 0 1f and only 1f p(x) =0,

wheére

g%z) >0 [z = £7(x)].

b
L]

Proof. Suppose h{z) = 0 for some z > 0. Then gn(z) =
n

8 Lez/xy .
Letting x be this common value we have
z=3x + xz 4 ooeo 4 x0
n
z 2 . i
¥* +x + + x
Then
-1 n n-l

‘ n—1 ,
pix) = X"+ x 400 b x ~Klx ¥ o+ x

On the other hand 1f p(x) = 0,



n n, -1

n 1 i

x t+x + oo +x=K(x L 4+x
Setting z = fn(x) we have
n
z . i
-i f (X)
and consequently
n ",z
g(z) =g (%)

proving our assumption.

We have shown that the positive (non—negative) zeros of h(z)
are in a one-to-one correspondence with those of p(x).

By Descarte’s rule of signs p(x) can have at most one

positive zero, say x By the above lemma, h(z) = 0 for at

0°

most positive value of 2z, namely zy * fn(xo)o

Recalling that
",z n
h(z) < 0 if and only if g "( % ) > g (2)

we are leading to the following lemmas.

n
LEMMA 17. 1f g i(z/K) > gn(z) for some z, then p(x) >0
n
where x = g i(z/K) and p(w) >0 where w= gn(z)°

n,
Proof. Letting x = g i(z/K), w = gn(z) we have
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x " +x +°--+x-%

w +w + coce buymg

and thus

n n -1

n n—l i

Vi le i bvarxlex
By hypothesuse, x > w and
| o
£1(x) > £(w) = KE “(x) > KE (W)

Therefore

n
p(x) = £(x) — Kf 2(x) >0

n
p(w) = £2(w) - KE (w) > 0.

n
LEMMA 18. If p(x) >0 for some x them f Lesx) > g'(z),

where z = fn(x).
Proof. p(x) > 0 implies that

n n,—1

- l‘_]‘-l~««-+x>t(x1+x:l'

x +x + °° +x)

or

n n,~1

n n_1+--~+x-l(xi+xi

x +x + v+ x) +Kg

for some q > 0.

Let
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n n
wrg 1[f 1x) +q]
s0 rhat

n n
f i(w) w f 1(x) +q.

Then w > x, and

n n -1

x +x +“°+K‘Mwi+wi d oooe + W),

n n
Since z = fn(x)y z/K = f i(w) and f i(z/l(.) =y >x= gn(z)o

Combining these two lemmas we see that
h(z) < 0 if and only 1f p(x) >0, z = fn(x) (x = gn(z)l°

Sinte p(x) >0 for large x, and since p(x) has at most

one positive root, say X p(x) >0 for all x > x Conse—

0}' on

quently h(z) <0 for all z > 2y ™ fn(xo)o If p(x) has no

positive zero, px) >0 for all x>0 and h(z) <0 for all
z2>0.

The determination of positive zeros of p(x) is, in general,
a difficult problem. We shall instead determine portions of the
positive x-axis for which p{x) > 0. It is of course only necessary

ro find any point x. > 0 for which p(xo) > 0. For them p(x) > O,

0

> X,
X 2 Xg

There ate three cases to consider.



Case 1. l(ni = n,

In this case p(l) =0 and

p{x) >0 for x

h(z) <0 for =z

gggg‘2u Kni >n.

> 1;

>n.

If x # 1, we may rewrite p(x) as

. n 1
(x) xQ*L -1 kX 1 -1
P % — 1 x —- 1 °
Then
r(x) = {x = 1) p(x)
n +1
o™ ok xt E k-1

has the same sign as

p(x) for x > 1 and opposite sign for

= (K-1) >0,
1

o

Thus p(K 1 ) >0 since K 1> 1. Hence

1

n-n
at least for x > K

plx) >0

1
. n, B
and h(z) <0 at least for z > f (K

i

).

80



81

Case 3. Knt<n.

p(l) = n — Kni >0
p(x) >0 for x>1

hiz) <0 for z > f(1) = v.

THEOREM 12. For all porms ), such that (L) <A A),

t = 1,2,...,k

n z
1, 1 n. -
1. g (g )>8tz) for z >n if Kn =n
1
! o n/ ™
2. g (g )>gfz) for z >f1(K if Kn >n
P n
- ) " .
ER (K)>8(21A for z, >n if Kn <n
A _(4)
Since y = 24 z, we have
v(Li; i
COROLLARY, For all norms ) such that
L) <o (B, 1 1,2,...,k
y, AN
n Y
g i(yi) g ()

for
L z)(A_)

1, Y>“,j(’f17 if .K.n.l"n



1
a_(A) o=y
% '“<1< ‘) if Kn >n

2. yZm—')- T
i

LH;A)
3. yznngv)- if Kn < nu.
. i°

-~ i

Therefors the estimate (5.1-8) represents an improvement over

(5.0-9) if for each 1

2,40
1 y>n max. we—-  for Kn = n
1<1<k ’){Lt) L
1
=1 CH}A)
2, y 2 (K ') max i for Kni >n
1< 1<k 17
AI}A)
3. y>no max —-= for Kn < mn.
1<i<k JLL) !

The intersection of the regions determined for each i above yields
an interval of the y axis for which our estimate is preferable.
The above analysis 1s valid for every ordered Schur form A.

Therefore we have:

THEOREM 13. Under the hypothesese of Theorem 11,

h ]
5,(8) < min 1[ max Lt 1 C (M) DB - A)
L1<i<k L 4
L - = g ly)
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V(L)
1T MY <A

.

and tbe mintmum 15 taken wirh respect to ail ordered Schur forms.

From the fact that B - A = U(U*BU - MU* ind the unitary
invariaace of 6, 6(B -~ A) = SU*BU — M) and we may rewrite the
above theorem as follows:

COROLLARY . For noa-normal M with M - B # 0 we have for

any norw ) dominating o

l'

: 3 s ] .
(5.2-3) 5 (B) < mm{ m | €M ) (U*BU - M)
L1<i<k 1
SRR AR J
whers
2 Y
1
y o=

1N DUERRL - M)

and the minimum is taken with respect to all U occurring in an

gfgered Schur form of M.

Related resulrs on  2J(M,B)

For given matrices M. B sati1sfying the hypotheses of
Theorem 11 let © represent the quanticy on the right hand side
of (5.2-3) The statement of the above corollarv may then be
interpreted geometricallv by saying rhat the spectrum of B 1s

contained in the unton. 15 of the disks
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D = IV =t < 8) 1=1,2,...,k.

Since ® —> 0 momnotonically as U*BU —-> M, or alternately,
as B —> A we may conclude by a well known continuity argument
(see e.g, [22]) that each component of L& coniains as many eigen—
values of B 33 of M. From this fact we can obtain, again using
s well-known argumert (sce especially the translator’s note in [23])

the fcllowing result:

THFOREM i4. For non—normal! M with M- B ¥ 0 we have for

any norm <) dominating o :

]

[_
| v b
v{M,B) < {2k - 1) min é[ max ——!-1—1-——- i Cv(N) ;_)(U*BU - M)j

L IK 1<k g i(yi)

where

(L)
B C,H(N) V(U*BU ~ M)

Yy

and where the minimum is taken with respect to all U occurring in

an ordered Schur form of M.
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APPENDIX

The Matrix Equation —~AX + XB = C and Related Results

The problem of finding & sclution to the marrix equation
~AX + XB = C where A, B are square matrices of arbitrary order
be denoted as problem (A). Tr 1s of importance in the development
of a canonical form, which 1n turn is applied to the solution of
problems (ii), (iii) and (iv) as set forth in the Introduction.

Let @3 be a Banach algebra, with elements A,B.Q,.... T will

be an operator on 43 such thar

T(X) = ~AX + XB for every ¥ ¢ 630

The following results are to be found in the literature.
Result 1. [Rutherford, [26)]
Let (B be the algebra of n X n matrices. 1f the character—

istic roots of A are distinct from the characteristic roots of {3,

then T—l exists and is bounded.
The proof, though constructive, depends upon a complete knowi—

edge of the Jordan Canonical form.

Result 2., [Heinz, (1313

Let ® be the space of bounded linear operators on a Hilbert

space, 7, with inner product (-,-). If there exist real numbers

a and b such that a>b B +B*<b, A+A* >,

then 'l‘-'1 exists as a bounded linear operator and has the
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representation

ThHQ) = -‘/0’°° A g B gr

where by A<a we mean (u.Au) <@ for all « € Bk
Notable extensions of Result 2 are given by Rosenblum [25] and

Cordes (5] . [6].

Resuly 3.

Civens ({11 gives a formal solution of AX +XAT =Y in terms
of adjoin:s. which althougb not done io bis papar, is immediately
extendable to the problem AX + XB = Y. The proof and subsequent
simplicity of the represzntatrion depend upon rthe assumption of
simplicity of the roots of A {or B), a 3svere restriction for our
purposes . These results generaliz: those of Hato [12] for the case
¥ =1

We shall see that an integral representation of the solution
of —~AX + XB = C similar to thar given by Result 2 ts valid under

assumptions similar to those in Result 1 but wirthout the restriction

that A, B and C( be square matrices of order n.

THEOREM A-1. A necessary and sufficient condition that problem

() have a solurion for ail C 15 that -A, +p, #0 where A,
are the eigeovalues of A and p, the eigenvalues of B; 1.e.,

if apd only af the eigeovalues of A differ from those of B. If

a solutior exists 1t 15 unigue.

Proof Ler A @B denote the Krorecker product of arbitrary



matrices A and B. Tha* 15, A(® B 1s a matrix whose general
element. 1s aij" The eigenvalues of A()B are all the possible
products ijj where kl is any eigenvalue of A amnd pJ is
any eigenvalue of B. [Bellman. [4]].

1f we consider —AX + XB = C 4s a system 2f linear equations
10 the uvrknowns. ‘xij the coefficient matris 1: -A@I + 1I® BT,

the roors of which are ot p.j . By assumption “a ot My # 0.

Therefore a (unigue) solurion #x18ts.

Resuit 4. (Bellman {4], p 175!

1f the expression
o0 —At Bt
X = - € " Ce dt
A

exists for all €. i1 represeors the upique solution of

~A% +¥B = (.,
The sx1stence of the integral 1mplies rhat lim z(t) = 0 where
t->®

z{¢) = G_At C.eBr“

We shall examine the form of z(t) 1in detail. For any square
scalar matrix G, ler J denote 1rs Jordan Canonical form. Thus
there exists a nonsingular constant matrix T such that

6 = TT L.

J has the form
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where J

and

where

is of order rie

It follows that

is a diagonal matrix with diagonal entries

9C

0 ...0
00000
P
0 s,/
/

Qlaﬂzs °°°9qu

0 ...
1l ...
.« oo . (i=1,2,...,8)
Mg+ 1
0 nq+
0...0 0\
.0 0|
00 |
L0 1
.o O 0//



e 0 euv O
tJ
0 e 1 0
tJ
. 0
rJ /
0 0 . e s;/
and
tn \
e 1 0 . 0
tn
2
CJO 0 e R 0
e -
0
t
q

Since Ji = )"qﬂ l[l_1 + z, and from the fact that nq-H. I.r1

commutes with zi we have

Thus
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where Ji is an ri X ri matrix.

Hence 1f JA’ J are, respectively, Jordan Canonical forms

B

for A and B and T, V are nonsingular matrices such that

oy w1 —1
A= IJAT , B = VJBV
i1+ follows thart
-td . L
e-At « T e A T.lb eB‘ = V e B A 1
and
-tJ tJ
2ty =Te A1leve Byl

Thus every element of 2(t) is a linear combinaiion of terms of
the form
(~x_ +p -
e b ] pk([)
where pk(t) is a polynomial of degree not exceeding n +m — 2 if
A 1is of order n and B is of nrder m.
It 1s clear then thar i1f Re xl >Re A, lim 2z(t) = 0. More-
o ' t >
over it is clear in this case that the integral exists for all C
since each element of z(t) 1s integrable. We have then the fol—

lowing lemma.

LEMMA A. A sufficient condition that

X = _'/;oo o At Bt dt
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be a solution of the matrix equation

~AX + XB = C

1+ that Re M > Re pj for all M and pjy eigenvalues of A

and B respectively, The soluriorv. if 1+ exis“s, 1s unique.

We shall now show that 1t 15 possible to give an integral
formula for X saimilar to Result 2 which will be valid 1f

Re ,\1> Re uj for all xl,. p}v

Re AL > Re pj implies rhar either

(1) Re A, > Re A,
i j
or

= Re i ) : .
(2) Re Xl e ;1], and Im X.l > 1m pj

We have already disposed of (1) 1n the preceading lemma and
must now consider the ca=e wherz (2) holds for some or all of the
roots of A and B.

Instead, however, of +rying to find a direct solution of
(A-1) -AX + XB = C,
we shall solve the system

(A-2) ~e'® A% 4 %98 = cet®,

where €@ 15 a real number to b2 determined
Clearly any solutioo of (A—?) will be a solution of (A-1) and

the uniqie solution will be givan by
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(A~-3) X = _‘/gco ele exp[ﬁeie Aé] C exp[ele Bﬁ] dt

provided rhe integral esxis<s.

The ides 18 to demonstratz values of O such that

10

Re e xl > Re eigpj for all \1” P and te apply the preceeding

1

lemma vielding vhe representation giver by (A-3).
For this. 1let an arbarrarv root of A be given by xiu=xl-fiyi;

and that of B be TR S SO
S T ]
The roots of -e‘e A are (—xi cos @ r vy sin @) +

10

L(~yi cos O — x, sio @) and those of e B are (uj cos 6 —

vj sin @) + i(vj cos © f'uj s1p 0).

Lerting

-
h () = I(u, - x,) co8 @ + {y, - v,) s1in 9]
1] £ i i j

-
+ ll(vi - Yi) cos 8 + (u, — xi) 5in é]
4

3

we have that every tewm of

Y e 10 e r4i0 ,]
ze(t) e exp L—e A] C expLe Bt,_

B O (o
consists of linear combinations of terms of the form e pk S

whe re pk(r) are polvnomiale in t of finite degree.

A sufficient condition rhat 1im z

e(t) = 0, and indeed that
t>mw

the integral (A-3) exist 12 +hat

(A-4) Re b‘J(S) <0 for all 1, j.
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We shall show that it is always possible to choose a © such

that (A~4) holds. Indeed © can be chosen from a non—degenerate

tnrerval.
Let
(A-5) aij e M U
(A—6) Bi_j. vy —'vj.,
Then

Y Q)g . N
Re hij( ) a, ., cos O + Bij sin @

1)

We have, by the lexicographic ordering:

aij <0 and aij = 0 implies Bij >0.

1f all aij <0 it is sufficient to choose © = Q,

i a ., =0 *hen Rz h (6) <0 1ff sin @< 0, 1i.e.
1] 13

X< 08 <2x.

If some a,, < 0, for Re hi (0) < 0 the following relation—

ij

ships must be true:

3

aij cos 6 +'Bij sin <0

Bij €in 6 < ~ aij cos O.

1f, in addition, = < @ < 2n,



228 <o
‘ij
ind
B;'
-2l > cor @
‘-a .
1)
(A-7) Let Yy aij/"aty
1f
(A-8) ¥y = min y{\,‘
1,]

£0: @ <y 1mplies that Re hi](,e\ <0. y# —-o00 since this would
mean that for some i, j, aij = 0, 81] < 0 which contradicts the
assumed lexicographic ordering. Since cot © assume all value

between - ® and + o in rhe 1nterval x <O < 2x, it is suf-

ficrent to choose © such that
(A-9) < ~:.or._1 ¥y <8 < 2.

LEMMA B. If vy {is defined by (A8) and if © 1is such that

{A-9) holds then

X = ~V/;°° 9‘19 exp[—-e'le At] c expl_eie Bt] de

-AX + XB = C,
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REMARK. If all a“

<0,

we may take O = 0 and

X = _‘ftx) e—At CeBt dt

is the unique solution of

0

—AX + XB = C,
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